Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Journal of Zhejiang University. Science. B ; (12): 1-14, 2023.
Article in English | WPRIM | ID: wpr-982396

ABSTRACT

The identification of tissue origin of body fluid can provide clues and evidence for criminal case investigations. To establish an efficient method for identifying body fluid in forensic cases, eight novel body fluid-specific DNA methylation markers were selected in this study, and a multiplex singlebase extension reaction (SNaPshot) system for these markers was constructed for the identification of five common body fluids (venous blood, saliva, menstrual blood, vaginal fluid, and semen). The results indicated that the in-house system showed good species specificity, sensitivity, and ability to identify mixed biological samples. At the same time, an artificial body fluid prediction model and two machine learning prediction models based on the support vector machine (SVM) and random forest (RF) algorithms were constructed using previous research data, and these models were validated using the detection data obtained in this study (n=95). The accuracy of the prediction model based on experience was 95.79%; the prediction accuracy of the SVM prediction model was 100.00% for four kinds of body fluids except saliva (96.84%); and the prediction accuracy of the RF prediction model was 100.00% for all five kinds of body fluids. In conclusion, the in-house SNaPshot system and RF prediction model could achieve accurate tissue origin identification of body fluids.

2.
Journal of Zhejiang University. Science. B ; (12): 241-248, 2022.
Article in English | WPRIM | ID: wpr-929055

ABSTRACT

Due to the virtues of no stutter peaks, low rates of mutation, and short amplicon sizes, insertion/deletion (InDel) polymorphism is an indispensable tool for analyzing degraded DNA samples from crime scenes for human identifications (Wang et al., 2021). Herein, a self-developed panel of 43 InDel loci constructed previously by our group was utilized to evaluate the genetic diversities and explore the genetic background of the Han Chinese from Beijing (HCB) including 301 random healthy individuals. The lengths of amplicons at 43 InDel loci in this panel ranged from 87 to 199 bp, which indicated that the panel could be used as an effective tool to utilize highly degraded DNA samples for human identity testing. The loci in this panel were validated and performed well for forensic degraded DNA samples (Jin et al., 2021). The combined discrimination power (PD) and combined probability of exclusion (PE) values in this panel indicated that the 43 InDel loci could be used as the candidate markers in personal identification and parentage testing of HCB. In addition, population genetic relationships between the HCB and 26 reference populations from five continents based on 19 overlapped InDel loci were displayed by constructing a phylogenetic tree, principal component analysis (PCA), and population genetic structure analysis. The results illustrated that the HCB had closer genetic relationships with the Han populations from Chinese different regions.


Subject(s)
Humans , Beijing , China , Forensic Genetics/methods , Gene Frequency , Genetics, Population , INDEL Mutation , Phylogeny
SELECTION OF CITATIONS
SEARCH DETAIL